Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method.

نویسندگان

  • M Häusser
  • A Roth
چکیده

We introduce a method that permits faithful extraction of the decay time course of the synaptic conductance independent of dendritic geometry and the electrotonic location of the synapse. The method is based on the experimental procedure of Pearce (1993), consisting of a series of identical somatic voltage jumps repeated at various times relative to the onset of the synaptic conductance. The progression of synaptic charge recovered by successive jumps has a characteristic shape, which can be described by an analytical function consisting of sums of exponentials. The voltage jump method was tested with simulations using simple equivalent cylinder cable models as well as detailed compartmental models of pyramidal cells. The decay time course of the synaptic conductance could be estimated with high accuracy, even with high series resistances, low membrane resistances, and electrotonically remote, distributed synapses. The method also provides the time course of the voltage change at the synapse in response to a somatic voltage-clamp step and thus may be useful for constraining compartmental models and estimating the relative electrotonic distance of synapses. In conjunction with an estimate of the attenuation of synaptic charge, the method also permits recovery of the amplitude of the synaptic conductance. We use the method experimentally to determine the decay time course of excitatory synaptic conductances in neocortical pyramidal cells. The relatively rapid decay time constant we have estimated (tau approximately 1.7 msec at 35 degrees C) has important consequences for dendritic integration of synaptic input by these neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferring presynaptic population spiking from single-trial membrane potential recordings.

BACKGROUND The time-varying membrane potential of a cortical neuron contains important information about the network activity. Extracting this information requires separating excitatory and inhibitory synaptic inputs from single-trial membrane potential recordings without averaging across trials. NEW METHOD We propose a method to extract the time course of excitatory and inhibitory synaptic i...

متن کامل

Background synaptic conductance and precision of EPSP-spike coupling at pyramidal cells.

The temporal precision of converting excitatory postsynaptic potentials (EPSPs) into spikes at pyramidal cells is critical for the coding of information in the cortex. Several in vitro studies have shown that voltage-dependent conductances in pyramidal cells can prolong the EPSP time course resulting in an imprecise EPSP-spike coupling. We have used dynamic-clamp techniques to mimic the in vivo...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Dendrosomatic voltage and charge transfer in rat neocortical pyramidal cells in vitro.

Most excitatory synapses on neocortical pyramidal cells are located on dendrites, which are endowed with a variety of active conductances. The main origin for action potentials is thought to be at the initial segment of the axon, although local regenerative activity can be initiated in the dendrites. The transfer characteristics of synaptic voltage and charge along the dendrite to the soma rema...

متن کامل

Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons.

Neocortical layer 5 pyramidal neurons possess long apical dendrites that receive a significant portion of the neurons excitatory synaptic input. Passive neuronal models indicate that the time course of excitatory postsynaptic potentials (EPSPs) generated in the apical dendrite will be prolonged as they propagate toward the soma. EPSP propagation may, however, be influenced by the recruitment of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 20  شماره 

صفحات  -

تاریخ انتشار 1997